
A Framework for Design and Validation of Face
Detection Systems

Nelson C. S. Campos∗†, Heron A. Monteiro†, Alisson V. Brito‡,
Antonio M.N. Lima∗†, Elmar U. K. Melcher† and Marcos R. A. Morais∗†

∗Graduate Program in Electrical Engineering - PPgEE
†Department of Electrical Engineering - DEE

Universidade Federal de Campina Grande - UFCG, Brazil
‡Center of Informatics

Universidade Federal da Paráıba - UFPB, Brazil

e-mail: nelson@ieee.org, heron@copin.ufcg.edu.br, alisson@ci.ufpb.br,
amnlima@dee.ufcg.edu.br, elmar@dsc.ufcg.edu.br, morais@dee.ufcg.edu.br

Abstract—A framework for hardware design and
validation of face detection systems is discussed. The
design begins at a high-level of abstraction by using
a software library as the golden reference model. The
golden reference model and the baseline model (model
under validation) are converted to a transaction level
(TLM) description or a register transfer level (RTL)
description. The degree of similarity of the detected
faces is used to determine whether the model under
validation fulfills the prescribed design requirements.
The framework is designed for real time high resolu-
tion image processing applications and is based on the
universal verification methodology (UVM). As a case
study, the framework was applied to validate a C++
baseline model written to implement the OpenCV li-
brary considered as the golden reference model. In this
case both models have been converted to TLM and thus
the time required for determining whether the baseline
model is valid or not is significantly reduced. Thus one
can decide as early as possible if one must proceed with
the conversion of baseline model to RTL based on the
result of the TLM validation test.

Keywords—Hardware Design, Verification, UVM,
SystemC, UVM Connect, OpenCV, Viola Jones, Rect-
angles Matching.

I. Introduction

Face Detection is a complex problem in computer vision
and is usually the first step towards Face Recognition.
Face recognition can be applied in many fields like neu-
roscience, psychology, human computer interaction, video
surveillance and face databases management [15] [16] [17].
Several techniques have been proposed for face detection
in the past decades. Among them Neural Networks [8],
Support Vector Machines [12], Hidden Markov Models [4]
and Viola Jones, which is considered a state of the art
method for real time applications [14].

The design flow of an image processing system to be
embedded in digital cameras and smartphones, usually re-
quire the partitioning of the specification in two branches:

This work was supported by CNPq, CAPES and PPgEE.

hardware and software parts. The software branch is
usually implemented in C/C++ code allowing to re-use
legacy libraries. This C/C++ code yields a transaction-
level description that can be integrated in a SystemC
environment providing stimuli for testing the hardware
branch. The hardware branch is implemented by using
hardware description languages, usually SystemVerilog.
The integration of the hardware and software branches
is done by simulation. The final design is submitted to
exhaustive tests before its physical fabrication to find bugs
and thus avoid the manufacture of an incorrect system that
would cost thousands to millions of dollars.

As mentioned before, this design flow is not error free
and thus verification methodologies like UVM [3] and the
library UVM Connect (UVMC) [7] are mandatory part
of the design flow, consuming up to 80% of the project
budget [11]. A problem that limits the use of UVMC in
the design of image processing system is the maximum
payload allowed by the UVM packer. If a transaction has
a size larger than of the maximum payload it cannot
be exchanged at once. In this case to exchange a large
data package it would be necessary to split it into several
parts having the size of allowed payload and then execute
as many transactions as chunks are available [5]. As an
example for exchanging a relatively modest image of 2MB
it would necessary to execute 512 transactions since the
maximum payload allowed for the UVM packer is 4KB.
This is quite time consuming and becomes critical in the
case of high resolution raw video since one second at 30
frames per seconds correspond to approximately 178 MB
of data.

The main contributions of this work are: i) to discuss
an alternative design flow that can be applied when the
golden reference model is given in the form of a software
system for face detection and ii) to mitigate the payload
bottleneck due to UVM packer payload size limitation.

The paper is organized as follows: in section II we
discuss about related works to integrate OpenCV with

mailto:nelson@ieee.org
mailto:heron@copin.ufcg.edu.br
mailto:alisson@ci.ufpb.br
mailto:amnlima@dee.ufcg.edu.br
mailto:elmar@dsc.ufcg.edu.br
mailto:morais@dee.ufcg.edu.br

UVM Connect for fast image processing hardware design
flow and testbench conceptions. In section III we endorse
the background of the proposed methodology presented
in this work. In section IV we discuss the results and in
section V we present the conclusions.

II. Related Work

A review in related works integrating OpenCV with
UVM and SystemC can be seen in [10] and [11], which they
present an approach for reducing the effort of testbench
implementations using SystemC and UVM. Because the
reference models are conceived in SystemC and verified in
UVM, UVMC was used to bridge the two SystemC/Sys-
temVerilog sides. In these works the SystemC models call
OpenCV functions to validate image and video algorithms.
Their proposed design starts with the system specification,
in which the application is described in C/C++ within
an OpenCV environment. Once the specification step is
done, SystemC is used to model the system by means of
Transaction-level Modeling (TLM) [9]. The next step is to
refine the abstract descriptions of the Electronic System
Level (ESL) into a final structure that can be translated
to a synthesizable hardware design at Register Transfer
Level (RTL).

The related works discussed above gives relevant back-
ground to this paper but they do not address the limitation
of the 4KB payload of UVMC that is extended with our
proposed method. Furthermore, the goal of this present
work is to provide a structure for quick design and valida-
tion of image processing algorithms with face detection as
our case study.

III. Proposed Design Methodology

Image processing applications require large volume of
data and are computationally intensive. The design of
many systems should be driven with small size, weight
and low power consumption constraints, which can only
be achieved with a combination of hardware and software
solutions, where the critical parts of the application is
implemented in hardware to accelerate the system com-
putation.

To address the size limit constraint of 4096 bytes im-
posed by the library UVM Connect, we present a way
to expand the size of transactions. Rather than exchange
the data content, that is limited to 4KB per packet,
the proposed approach in this paper sends the memory
address of the transaction, that is equivalent to a long
unsigned integer with 64 bits. Thus, this approach leads
to a significant decrease in simulation time compared with
the method proposed in [5], which is based on fragmenting
the data into chunks. This technique of applying the
proposed method of exchanging transactions defined as
memory address to yield a framework for quick design
and validation of face detection systems. The output of
these systems are rectangles coordinates of a likely face
region. We evaluate the both systems using rectangles

matching with two metrics: one proposed in [6], that is
inversely proportional to the arithmetic mean area of the
two rectangles and another metric proposed in this paper,
that is inversely proportional to the geometric mean area
of both rectangles.

There are different ways to design hardware for image
processing applications. Similar to [11], we propose the
design flow of Figure 1. The first step of the flow is the
specification problem, that is the highest level of abstrac-
tion and describes the application. Later, a manual par-
titioning separates the project in two branches: hardware
and software parts. In the first branch, a golden reference
model written in OpenCV is mapped in TLM level, while
the second branch refines a C++ baseline implementation
based in [2] in TLM with a lower level of abstraction. The
last stage of the design flow is the evaluation metrics of the
both reference model and model under validation systems,
which is done inside an UVM environment.

yes

no

 execution and
evaluation

metrics
UVM Environment

 C++ baseline
 model under
 validation

 Golden reference
model

SystemC/TLM
 Mapping

SystemC/TLM

Mapping

 problem
specification

achieved
 specification?

Parameters

RTL Design

Fix baseline
model

Face
Images

Database

select images
from database

Fig. 1: The proposed design flow

A set of face images database feeds both reference
model and model under validation and the execution and
evaluation metrics block of the framework generates a
report containing information about the number of the
detected and missed faces, besides the false positive and
false negatives rates. These results measures the quality
of the model under validation, evaluating if the model
satisfies the specification or not.

The design flow proposed in Figure 1 starts with a high-
level of abstraction, using OpenCV for the specification
stage. After the partitioning step, the two branches of
the flow are modeled in transaction level, mapping the
specification in TLM, where the communication between
components do not take into account architectural details,
which may be added later.

A. TLM Mapping

TLM Mapping is the first step within the UVM Envi-
ronment. At this stage, the OpenCV application is inte-
grated as a component within the environment, providing
functions to read image files using Direct Programming In-
terface (DPI), that is an interface in which SystemVerilog
calls functions from foreign languages like C or C++.

In Code 1 the frame sequence class generates frame
transactions, which contains the image data crossing the
environment. To start the transaction, the external func-
tion readframe shown in Code 2 exports OpenCV func-
tions implemented in C++ via DPI. This C++ function
allocates a buffer with all the pixels inside the image.

Code 1: SystemVerilog class of frame sequence

context function l ong in t unsigned readframe (s t r i n g f i l ename) ;
c l a s s f rame seq extends uvm sequence #(f r ame t r) ;

‘ u vm ob j e c t u t i l s (f rame seq)
function new(s t r i n g name=”frame seq ”) ;

super . new(name) ;
endfunction : new

s t r i n g f i l ename = ”img . jpg ” ;

task body ;
f r ame t r t r = f rame t r : : t ype i d : : c r ea t e (” t r ”) ;
s t a r t i t em (t r) ;
t r . a = readframe (f i l ename) ;
f i n i s h i t em (t r) ;

endtask : body
endc la s s : f rame seq

Code 2: An external OpenCV function to read a frame

extern ”C” unsigned long long readframe (const char∗ f i l ename)
{

Mat image = imread (f i lename , 1) ;
return (unsigned long long) image . data ;

}

To deal with the limitation of the maximum 4KB
payload per transaction when using UVMC, traditional
approaches are normally based on the transmission of
image frames in several smaller chunks of data [5], as can
be seen in Codes 3 and 4. This approach is functional
but not efficient when large volume of data must be
transmitted per transaction. In our case, the goal is to
achieve functional verification of systems for processing
high resolution images. Thus, the traditional approach
results in long simulation time.

Code 3: SystemVerilog class of frame transaction defined as 4KB block
of data

‘def ine SIZE CHUNK 1024
c l a s s a t r extends uvm sequence item ;

in t a [‘SIZE CHUNK] ;

‘ uvm ob j e c t pa r am ut i l s b e g i n (a t r)
‘ u vm f i e l d s a r r a y i n t (a , UVMDEFAULT)

‘ u vm ob j e c t u t i l s e nd

function new (s t r i n g name = ” a t r ”) ;
super . new(name) ;

endfunction
endc la s s

Code 4: SystemC side of frame transaction defined as 4KB block of data

#define SIZE CHUNK 1024
struct a t r {

int a [SIZE CHUNK] ;
} ;
UVMC UTILS 1(a t r , a)

Rather than exchanging the data content, that is limited
to 4KB per packet, our proposed approach sends the

memory address of the transaction, that is equivalent to a
long unsigned integer with 64 bits. Thus, this approach
leads to a significant decrease in simulation time compared
with the method proposed in [5].

The outline of the transactions defined as memory
address can be seen in Codes 5 and 6. This outline is the
core of the UVM Environment of the proposed framework.

Code 5: SystemVerilog class of frame transaction defined as memory
address of the image

c l a s s a t r extends uvm sequence item ;
l ong in t unsigned a ;

‘ uvm ob j e c t pa r am ut i l s b e g i n (a t r)
‘ u vm f i e l d i n t (a , UVMDEFAULT)

‘ u vm ob j e c t u t i l s e nd

function new (s t r i n g name = ” a t r ”) ;
super . new(name) ;

endfunction
endc la s s

Code 6: SystemC side of frame transaction defined as memory address of
the image

struct a t r {
unsigned long long a ;

} ;
UVMC UTILS 1(a t r , a)

B. Formal Method of the UVM Environment

The general structure of the UVM Environment of
Figure 1 is illustrated in Figure 2. The environment is
composed by an Active Agent that stimulates the Device
Under Test, a Passive Agent that collects data to be
evaluated and a Scoreboard, which evaluates the stimuli
coming from both agents.

sequence

transaction

Tin(k, τ)

ENVIRONMENT

PASSIVE AGENTACTIVE AGENT

sequencer

reference
 model

DUTdriver monitor

SCOREBOARD

COMPARATOR
Tor(k,τ)

sin(t)
so(t)

ce(k,τ)

Tod(k,τ)

Fig. 2: General structure of the UVM Environment

For random cases, the Active Agent creates a sequence
of transactions Tin(k, τ), with the form of Equation 1,
where Tin(k, τ) is a random vector of integers tin(·, ·) ∼
U(−231, 231 − 1), and U(−231, 231 − 1) denotes a discrete
uniform probability distribution which stimulates the ref-
erence model and the driver. For natural images taken
from a camera or a database, in the frequency ω, Tin(k, τ)
has the power density spectrum S(|ω|) = c

|ω|2−χ
, where

c > 0 and χ < 1 [13].

Tin(k, τ) =
[
tin(0, τ) tin(1, τ) ... tin(N − 1, τ)

]
(1)

The driver converts the transaction Tin(k, τ) into sig-
nals sin(t), according to Equation 2, where the function
D(·) converts transactions into signals that feeds the
device interface. The DUT produces the output signals
so(t) = DUT (sin(t)), that is collected by the monitor. The
monitor defines the function M(·) that converts the signals
so(t) into output transactions Tod(k, τ), where Tod(k, τ)
is defined in Equation 3. The operation of both functions
D(·) and M(·) is depicted in Figure 3. Similarly, the output
transactions of the referente model Tor(k, τ) has the form
of Equation 4.

sin(t) = D(Tin(k, τ)) (2)

Tod(k, τ) =
[
tod(0, τ) tod(1, τ) ... tod(N − 1, τ)

]
(3)

Tor(k, τ) =
[
tor(0, τ) tor(1, τ) ... tor(N − 1, τ)

]
(4)

Tod(k, τ) = M(so(t)) (5)

clock

data 1'b1 1'b0 1'b1

START DATA STOPa b c d

D (Tin(k, τ)) 5

 3
clock

data 1'b0 1'b1 1'b1

START DATA STOPa b c d

Tin(k, τ)

Tod(k, τ)
so(t)

sin(t)

M (so(t))

clock

clock

Fig. 3: Operation of the functions D(·) and M(·)

The time τ of the k − th transaction is related to the
t − th period of the clock according to equation 6, where
N is the size of Tin(k, τ).{

k ≡ t(mod N)
τ = t−k

N

(6)

Both transactions generated by the monitor and the
output of the reference model should be compared by
the comparator in which evaluates the comparison error
ce(k, τ). If the difference of both transactions are lower
than a threshold ε, then they have a match, otherwise they
mismatch as can be seen in equation 7.

ce(k, τ) =

{
1, |Tor(k, τ)− Tod(k, τ)| ≤ ε
0, otherwise

(7)

A pre-validation step is done when the RTL implemen-
tation is not available in the early stages of the design
flow of complex projects. In such cases, the environment

of Figure 2 is structured according to Figure 4. In this
framework, the driver component is removed from the
Active Agent and the Passive Agent is withdrawn, because
there is no interface at this stage of the design flow. Then,
the validation is at algorithmic and systemic level and
the comparator evaluates transactions coming from the
reference model and the model under validation, which is
a previous TLM version that will be replaced by the RTL
in a later stage.

sequence

transaction

Tin(k, τ)

ENVIRONMENT

ACTIVE AGENT

sequencer

reference
 model

 model
 under
validation

SCOREBOARD

COMPARATOR
Tor(k,τ)

ce(k,τ)

Tod(k,τ)

Fig. 4: Structure of a UVM Environment pre-validation step

C. Evaluation Metrics

In this subsection the reference model is defined as
model C1 and the model under validation as model C2,
both with the same input image. The output of these
models are rectangle coordinates of a likely face region
as shown in Figure 5.

input
image

reference
model C1

model under
validation C2

rectangle
coordinates Ri

rectangle
coordinates Rj

rectangles
matching

EVALUATION METRICS

Fig. 5: Evaluation Metrics of the UVM comparator

The comparator of the UVM Environment performs
an analysis on the output transactions coming from C1

and C2. To evaluate a match, the Equation 7 should be
adapted to compute a similarity between rectangles. A
metric which fits well to measure similarity between image
targets is the dice coefficient [6].

The rectangles Ri = (xi, yi, Li) and Rj = (xj , yj , Lj)
have areas S(Ri) = L2

i and S(Rj) = L2
j , respectively.

The dice score coefficient between Ri and Rj is defined

as dsc(Ri, Rj) =
2S(Ri∩Rj)

S(Ri)+S(Rj)
=

2S(Ri∩Rj)
L2
i+L2

j
, where 0 ≤

dsc(Ri, Rj) ≤ 1. This metric gives the percentage of

match between two rectangles and is computed by the
comparator of the UVM Environment.

The intersection area between Ri and Rj is obtained
applying Equation 8 into Equation 9. Note that the coef-
ficient of dice is inversely proportional to the arithmetic
mean area of the two rectangles Ri and Rj .

The comparator also evaluates a metric with a match
normalized between 0 and 1 that is inversely proportional
to the geometric mean area of the two rectangles Ri and
Rj , according to Equation 10.

[
δ ζ
η ρ

]
=

[
max(xi, xj) min(xi + Li, xj + Lj)
max(yi, yj) min(yi + Li, yj + Lj)

]
(8)

S(Ri ∩Rj) =

{
(ζ − δ)(ρ− η), if ζ > δ and ρ > η

0, otherwise
(9)

m(Ri, Rj) =
S(Ri ∩Rj)√
S(Ri)S(Rj)

=
S(Ri ∩Rj)

LiLj
(10)

If the comparator is evaluating the transactions coming
from C1 and C2 with the match percentage normalized
by the geometric mean, then the comparison expression is
given by Equation 11.

ce(k, τ) =

{
1, m(Ri(k, τ), Rj(k, τ)) > ε
0, otherwise

(11)

As a design decision, we choose ε = 0.75 for the thresh-
old, similar to the tolerance established in the performance
evaluation technique proposed in [6].

R1'

R2'

R3'

R2

R3

R4

R1

Ri : Objects
detected
with model C1

Rj : Objects
detected
with model C2

x

y

(0,0)

R2

R3

R4

R3'

R1'

R2'

R1

Li

Lj

(xi, yi)

(xj, yj) = (δ, η)

(ζ, ρ)

S(Ri∩Rj)

i≠j

C1 C2

Fig. 6: Rectangles Matching (photograph from Nasa on The Commons)

To give an example, in Figure 6, the green squares Ri,
where i = 1, 2, 3, 4 are the output vectors produced by C1,
while the blue squares Rj , for j = 1′, 2′, 3′ are produced by
C2. According to theses vectors, there were two matches,
one between R1 and R′1, and another between R2 and
R′3. Moreover, the model C1 produced one false positive
(detected a object that is not a face) in the region defined
with the coordinates of R3. The model C2 had a false

negative (missed a face in the region where C1 detected
R4), consequently a mismatch occurred in the rectangle
R4 of the model C1.

IV. Results and discussions

In subsection IV-A we will discuss the feasibility of
applying the transaction model with data transmission
by memory reference to the proposed framework, which
has as ground-truth the Viola Jones algorithm of the
OpenCV. In addition, in subsection IV-B we will analyze
the operation of the validation environment by evaluating
the performance of the Viola Jones algorithm with the
implementation baseline of [2].

A. Extending the Transaction Payload in UVM Connect

To compare the execution time to send frame transac-
tions from a source to a sink, two methods were proposed:
the first method is is to slice the data according to [5]. The
second method is our approach to define the transaction
as a memory address to the image data. Table I shows the
results of the simulation time to transfer images of 400KB,
4,000KB, 20,000KB and 40,000KB with the two methods.

Table I: Method 1: transmission by value. Method 2: transmission by
reference.

Size of Image Simulation Time Speedup

Method 1 Method 2

400KB 1.134s 0.818s 1.39
4,000KB 4.070s 0.846s 4.81
20,000KB 16.891s 0.924s 18.28
40,000KB 33.150s 0.915s 36.23

The simulation time to send a transaction using Method
1 in seconds is computed in function of the number of
chunks (NC = no of blocks of 4KB) according to equation
12, in which is obtained by linear interpolation of the
points from Table I, where tref ± α ≈ 0.82s is the ap-
proximated time to send the transaction with the Method
2, α is a very slow number and λ = 0.00325s

block of 4KB
.

t(NC) ≈ tref ± α+ λNC (12)

It is important to say that this relation is based on
the computer configuration used in the experiments. The
following setup was used: Intel Pentium (R) CPU G630
with 3.6GiB of RAM Memory in a 64-bit CentOS 7.

B. Face Detection Systems Evaluation

To evaluate the performance of the model under valida-
tion, in which the baseline is the Viola Jones algorithm
implementation of [2], we performed tests with the BIOID
Database, composed by 1521 images 384x286x1 pixel res-
olution [1]. The Viola Jones algorithm of OpenCV, which
is the reference model, presented 296 false positives and
40 falses negatives for the BioID Database, as can be
seen in Table II. In contrast, for the same database, the
model under validation committed 2 false positives and 417

false negatives. To evaluate the match criteria, the UVM
comparator performed two metrics. The first metric is our
proposed coefficient normalized by the geometric mean
area of the rectangles, while the other is the dice coeffi-
cient. To compute a match, the percentage of both metrics
should be at least 75%. According to Table II, using the
geometric mean coefficient the comparator performed 38
matches with 83.87% of similarity and 1064 matches with
93.74%. Using the dice score theses results were very close.
The number of mismatches using the geometric mean
coefficient was 419 with 4.93% of similarity. Note that the
total number of false negatives in both reference model
and model under validation. However, using the dice score,
the comparator performed 2 additional mismatches with
percentage of 74%, since the established threshold is 75%.

Table II: Face Detection Rates for Database BIOID [1] (1521 images
384x286x1 pixel resolution)

Reference Model Model Under Validation

False Positives False Positives

frequency no of falses frequency no of falses

1225 0 1519 0
269 1 2 1
25 2 – –
2 3 – –

False Negatives False Negatives

frequency no of falses frequency no of falses

1481 0 1104 0
40 1 417 1

Percentage of Match

geometric mean coefficient dice score coefficient

no of matches percentage no of matches percentage

38 83.87% 42 83.87%
1064 93.74 % 1058 93.73%

no of mismatches percentage no of mismatches percentage

– – 2 74.00%
419 4.93% 419 4.93%

An investigation was made in the model under validation
to analyze the discrepancy of its results with the reference
model. It was noticed that the scale factor of the Viola
Jones algorithm [14] of the model under validation was set
at 20% and the reference model had set the scale factor
to 10%. This issue has been solved and the model under
validation increased the number of false positives to 5 and
reduced the number of false negatives to 304 as can be
seen in Table III. After the scale adjustment, using the
geometric mean coefficient the comparator performed 36
matches with 83.06% of similarity and 1174 matches with
92.84%. Using the dice score theses results were very close.
The number of mismatches using the two metrics was 306
with 4.89% of similarity. Thus, the framework showed its
functionality to perform an automatic evaluation in both
models.

Table III: Face Detection Rates for Database BIOID [1] (1521 images
384x286x1 pixel resolution) after adjusting the scale factor

Reference Model Model Under Validation

False Positives False Positives

frequency no of falses frequency no of falses

1225 0 1516 0
269 1 5 1
25 2 – –
2 3 – –

False Negatives False Negatives

frequency no of falses frequency no of falses

1481 0 1217 0
40 1 304 1

Percentage of Match

geometric mean coefficient dice score coefficient

no of matches percentage no of matches percentage

36 83.06% 43 83.06%
1179 92.84% 1172 92.84%

no of mismatches percentage no of mismatches percentage

306 4.89% 306 4.89%

V. Conclusions

In this paper, we presented a framework for quick
hardware design and validation of face detection systems.
The framework is suited for image processing applica-
tions and is written using UVM Connect (UVMC). Since
UVMC has the limitation of 4KB per transaction, tra-
ditional techniques are based on fragmenting the image
into small pieces. However, this increases the simulation
execution time, that is dependent on the data size to
be transmitted. Our proposed approach only transmits
the data by reference to a memory address instead. The
proposed approach achieved an almost constant time for
simulating large frame transactions and is independent
on the size of the image. It significantly increases the
performance of the simulation when a large amount of
data is being transmitted. Case studies show, that the
proposed approach achieved a speedup of 33.15 for the
transmission of an image of 40,000KB compared to the
prior approach presented in literature. Furthermore, using
our proposed validation system we defined the comparator
using region matching metrics to evaluate the Viola Jones
implementation in SystemC/TLM of the model under
validation versus the golden reference model written using
OpenCV libraries reducing significantly the required time
to find if the baseline model is valid or not.

References

[1] Bioid face database - facedb. https://www.bioid.com/About/
BioID-Face-Database.

[2] F. comaschi. https://sites.google.com/site/5kk73gpu2012/
assignment/viola-jones-face-detection.

[3] Accellera. Universal verification methodology. user’s guide,
2011.

[4] Peter M Corcoran and Claudia Iancu. Automatic Face Recog-
nition System for Hidden Markov Model Techniques. INTECH
Open Access Publisher, 2011.

https://www.bioid.com/About/BioID-Face-Database
https://www.bioid.com/About/BioID-Face-Database
https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection
https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection

[5] Mentor Graphics Corporation. Fast packer converters.
https://verificationacademy.com/verification-methodology-
reference/uvmc-2.3/docs/html/files/examples/xlerate-
connections/README-txt.html, 2016.

[6] David Doermann and David Mihalcik. Tools and techniques for
video performance evaluation. In Pattern Recognition, 2000.
Proceedings. 15th International Conference on, volume 4, pages
167–170. IEEE, 2000.

[7] Adam Erickson. Introducing uvm connect. Mentor Graphics
Verif. Horiz, 8(1):6–12, 2012.

[8] R Fefaud, OJ Bernier, JE Viallet, and M Collobert. A fast
and accurate face detection based on neural network. IEEE
Transactions on PAMI, 23(1):42–53.

[9] Frank Ghenassia et al. Transaction-level modeling with Sys-
temC. Springer, 2005.

[10] Michael Mefenza, Franck Yonga, and Christophe Bobda. Auto-
matic uvm environment generation for assertion-based and func-
tional verification of systemc designs. In Microprocessor Test
and Verification Workshop (MTV), 2014 15th International,
pages 16–21. IEEE, 2014.

[11] Michael Mefenza, Franck Yonga, Luca B Saldanha, Christophe
Bobda, and Senem Velipassalar. A framework for rapid pro-

totyping of embedded vision applications. In Design and Ar-
chitectures for Signal and Image Processing (DASIP), 2014
Conference on, pages 1–8. IEEE, 2014.

[12] Edgar Osuna, Robert Freund, and Federico Girosit. Training
support vector machines: an application to face detection. In
Computer vision and pattern recognition, 1997. Proceedings.,
1997 IEEE computer society conference on, pages 130–136.
IEEE, 1997.

[13] Daniel L Ruderman. The statistics of natural images. Network:
computation in neural systems, 5(4):517–548, 1994.

[14] Paul Viola and Michael J Jones. Robust real-time face detection.
International journal of computer vision, 57(2):137–154, 2004.

[15] Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedes-
trians using patterns of motion and appearance. International
Journal of Computer Vision, 63(2):153–161, 2005.

[16] Harry Wechsler, Jonathon P Phillips, Vicki Bruce, Francoise Fo-
gelman Soulie, and Thomas S Huang. Face recognition: From
theory to applications, volume 163. Springer Science & Business
Media, 2012.

[17] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel
Rosenfeld. Face recognition: A literature survey. ACM comput-
ing surveys (CSUR), 35(4):399–458, 2003.

https://verificationacademy.com/verification-methodology-reference/uvmc-2.3/docs/html/files/examples/xlerate-connections/README-txt.html
https://verificationacademy.com/verification-methodology-reference/uvmc-2.3/docs/html/files/examples/xlerate-connections/README-txt.html
https://verificationacademy.com/verification-methodology-reference/uvmc-2.3/docs/html/files/examples/xlerate-connections/README-txt.html

	I Introduction
	II Related Work
	III Proposed Design Methodology
	III-A TLM Mapping
	III-B Formal Method of the UVM Environment
	III-C Evaluation Metrics

	IV Results and discussions
	IV-A Extending the Transaction Payload in UVM Connect
	IV-B Face Detection Systems Evaluation

	V Conclusions
	References

