
A 4-MHz parameterized Logarithm-Square Root IP-Core

Nelson Campos, Roberto Costa, Elton Costa, Gutemberg Junior and Elmar Melcher
Federal University of Campina Grande - UFCG

Center of Electrical Engineering and Informatics - CEEI
(nelson.campos, roberto.costa, elton.costa)@ee.ufcg.edu.br

gutemberg@dee.ufcg.edu.br
elmar@dsc.ufcg.edu.br

Abstract—Logarithms and square root are non-elementary op-
erations frequently used in digital signal processing. In this work,
implementation and design of an IP-Core to compute square root
and multibase logarithm is presented. The design is parameter-
ized in fixed point notation achieving a low arithmetic error even
when irrational numbers are being calculated. The module was
synthesized in ASIC using FSC0G D GENERIC CORE from
UMC and in FPGA occupying 518 logic elements and two DSP
blocks for multiplication.

Keywords—Digital Signal Processing, FPGA, Logarithm,
Square Root, VLSI.

I. INTRODUCTION

The logarithm operation is widely used in digital signal
processing applications such as speech recognition [4] [10]
and 3D graphics [5]. The square root operation is also present
in many modern applications such as Cholesky decomposition,
LU factorization and in the solution of quadratic equations
[11]. This operation requires expensive computational re-
sources and high energy consumption, and its efficient im-
plementation may be accomplished with the use of dedicated
hardware. This paper demonstrates the hardware implemen-
tation of an arithmetic module called SQRTLOG comprising
four modules: sqrt, log2 , log10 and loge. First, the paper
describes some common algorithms to compute the square
root and the binary logarithm. Next, the paper explains the
proposed architecture of the SQRTLOG and finally discusses
the results of the synthesized hardware in ASIC and FPGA.

II. SQUARE ROOT COMPUTATION METHODS

There are many ways to compute the square root operations
for VLSI and FPGA implementations. Three algorithms will
be discussed here.

A. The Newton-Raphson Algorithm

The Newton-Raphson method is widely used in order to
calculate Y =

√
X , by approximation. The reciprocal square

root using this method may be computed iteratively according
to equation 1, where qi is the approximate value of 1/

√
X .

After n iterations the square root of X is Y ≈ qnX [6].

qi+1 = qi(3− xq2
i)/2 (1)

B. The Restoring Algorithm

The restoring algorithm will calculate square root and its
remainder value in iterative process. Consider that S =

√
D

and D = S2 +R, where D is the radicand, S is the square root
result, and R is the remainder. The restoring algorithm will
guess the value of S and R iteratively. If there is a wrong
guess of S, the previous value is restored[9].

C. The Non-Restoring Algorithm

The non-restoring algorithm is similar to the restoring one
and it will calculate square root and its remainder value in
iterative process. However, unlike the restoring algorithm, in
case of a wrong guess of S, it does not change the bits of S
more than once [9].

III. LOGARITHM COMPUTATION METHODS

Some techniques have been used in hardware implementa-
tions of Logarithms.

A. Look-Up Table

According to the implementation described in [10] any
number can be represented in the form of a = N×2p, where
p is integer and N ∈ [0.5,1]. Taking the binary logarihtm of a,
the equation 2 is obtained. Since p is the most significant bit
of a, and log2(N) can be found using a LUT, the computation
of the loge(a) can be done mutliplying log2(a) by a constant
as shown in equation (2).

log2(a) = p+ log2(N) (2)

B. Cordic Method

The CORDIC is a simple and efficient algorithm to calculate
hyperbolic and trigonometric functions setting one bit per
iteration [2][7][8]. The logarithm computation may be accom-
plished using the hyperbolic expression shown in equation 3.

ln(a) = 2× tanh−1 (a−1)
(a+1)

(3)

C. Floor-Shift Method

The method presented in [7] computes the binary logarithm
through the following steps:
• first calculate log2(x) by searching for the leading one to

get the integer part of log2(x)

• then calculte the fractional part of the logarithm with
equation 4:

log2(m) =
x−2blog2(x)c

2blog2(x)c
(4)

IV. PROPOSED ARCHITECTURE

This section discusses the proposed architecture of the
SQRTLOG, which is divided in two parts: the sqrt module and
the logarithm module. The sqrt module computes the square
root of N = (a1+a2+a3+ ..+an)

2 guessing one bit at a time
according to equations 5 to 7, where am is the m−th bit being
guessed.

Xm = Xm−1−Ym (5)

Ym = (2Pm−1 +am)am (6)

Pm =
m

∑
i=0

ai (7)

The steps to compute the square root algorithm can be seen
in the flowchart depicted in Figure 1.

BEGIN

ENDi≥0 no

yes

yes

no
Y≤X

ai=0
i=i-1

 X=X - Y
P=1≪ i
 ai=1

Y=P≪(i+1)+1≪(i+i)

Fig. 1. Square Root Algotihm Flowchart

Similarly, the algorithm to compute the binary logarithm
proposed by [12] was adapted to a finite state machine for
hardware implementation setting one bit per iteration accord-
ing to equation 8. The algorithm referenced by [12] takes the
logarithm of x (where x ∈ [0,1]) and the finite state machine
scales a number out of this range according to equation 9.
To compute logarithms in base 10 and natural, SQRTLOG
simply takes the binary logarithm output multiplying its result
by 1/log2(10) and 1/loge(10), respectively.

yi =

{
1, if x2

i ≥ 2⇒ xi =
xi
2

0, if x2
i < 2

(8)

x = 2k× p, 0≤ x≤ 1⇒ log2(x) = k+ log2(p) (9)

The algorihtm flowchart to compute the binary logarithm
can be seen in Figure 2.

BEGIN

END

scale x

i≥0
no

yes

x=x2

x≥2
yes

noy(i)=0
i=i-1

y(i)=1
x=x/2
i=i-1

Fig. 2. Binary Logarithm Algotihm Flowchart

The square root and logarithm modules are interconnected
using an interface Valid/Ready present in AMBA AXI Protocol
[1] and its architecture is described in Figure 3. The signals
of its interface are described in Table I and depicted in Figure
4.

1/log2(10)

SQRTLOG Interface

SQRT module

Binary Logarithm module

1/log2(e)

Multibase Logarithm module

op

1

Fig. 3. The SQRTLOG architecture

TABLE I
SQRTLOG: DESCRIPTION OF THE INTERFACE SIGNALS

Signal name Port type Size in bits Signal description
clock input 1 clock signal
reset input 1 reset signal
op input 2 operation code that selects one computation (sqrt, log2, log10 or loge)
data in input N BITS input number generated by the source to stimulate the SQRTLOG
data out output N BITS output number computed by the SQRTLOG
iReady output 1 handshake signal that indicates that the destination is ready to receive the number
oReady input 1 handshake signal that indicates that the SQRTLOG is ready to receive the number
iValid input 1 handshake signal that indicates that the source is ready to send the number
oValid output 1 handshake signal that indicates that the LOG is ready to send the number
done output 1 indicates that the computation is done

Fig. 4. SQRTLOG: Interface signals

V. RESULTS

This section discusses the synthesis results of the SQRT-
LOG in ASIC and in FPGA.

A. ASIC Synthesis

The module was simulated using dc shell
from Synopsys [3] with the standard cell library
FSC0G D GENERIC CORE from UMC [13] with 0.13µm
CMOS technology using a 4MHz clock. During the
experiment, the number of ports and cells are plotted as a
function of the number of bits of N (see Figure 5).

Number of Bits
0 5 10 15 20 25

N
u
m

b
e
r

o
f

Po
rt

s

0

200

400

600

800

1000

1200
Number of Ports per Bit

Number of Bits
0 5 10 15 20 25

N
u
m

b
e
r

o
f

C
e
lls

500

1000

1500

2000

2500
Number of Cells per Bit

Fig. 5. SQRTLOG: Number of ports and cells vs NBITS

The area and the power consumption as a function of the
number of bits of the SQRTLOG are presented in Figure 6.

Number of Bits
0 5 10 15 20 25

A
re

a
 (

m
m2

)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Area Per Bit

Number of Bits
0 5 10 15 20 25

Po
w

e
r

(u
W

)

4

6

8

10

12

14

16

18
Power Consumption Per Bit

Fig. 6. SQRTLOG: Area and Power vs NBITS

The arithmetical percentage error of the module was ana-
lyzed to compute

√
π and ln(π) and the results can be seen

in Figure 7.

Number of Bits
0 10 20 30

%
 E

R
R

O
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4
sqrt(pi)

Number of Bits
0 10 20 30

%
 E

R
R

O
R

0

2

4

6

8

10

12

14
ln(pi)

Fig. 7. Arithmetic error vs NBITS

The module was parameterized in fixed point representation
with QI.F , with I integer bits and F fractional bits and
NBIT S = I +F . The experiment setup measured the module
with NBIT S, ranging from 4 to 24 bits, with a 4-bit step
for each measurement. Table II shows that when NBIT S = 4,
it presents the lower area and power consumption. However,
the Higher arithmetic error is obtained. For NBIT S = 24, the
arithmetic error decreases significantly, increasing power and
area. For NBIT S= 16, there is a good trade-off between power
and area vs % error, as can be seen on Table II.

TABLE II
ASIC SYNTHESIS RESULTS

NBITS POWER AREA %error sqrt(pi) %error ln(pi)
4 4.21µW 7010µm2 1.267 12.643

16 9.65µW 18513µm2 0.165 0.700
24 17.67µW 35683µm2 0.0134 0.017

B. FPGA Synthesis

The design was also synthesized (with NBIT S = 20) in the
altera DE1-SoC board using 2% of its logic utilization. The
synthesis report was generated using the Quartus Prime from
Altera and the results can be seen in Table III.

Using the Netlist Viewer from Quartus the circuit of the
Figure 8 was obtained. Due to the square part of the logarithm
algorithm, two multipliers were inferred from a total of 87 of
the FPGA device.

SQRTLOG:sl

clock

reset

op[1..0]

data_in[19..0]

done

data_out[19..0]
Decoder0

IN[1..0] OUT[3..0]

LOG2:myLog

clock

iValid

oReady

reset

number[19..0]

iReady

oValid

logNumber[20..0]

x

Mult0
A[9..0]10'h134

B[20..0]
OUT[29..0]

x

Mult1
A[10..0]11'h2c6

B[20..0]
OUT[29..0]

Mux3

SEL[1..0]

DATA[3..0]
OUT

Mux4

SEL[1..0]

DATA[3..0]
OUT

Mux5

SEL[1..0]

DATA[3..0]
OUT

Mux6

SEL[1..0]

DATA[3..0]
OUT

Mux7

SEL[1..0]

DATA[3..0]
OUT

Mux8

SEL[1..0]

DATA[3..0]
OUT

Mux9

SEL[1..0]

DATA[3..0]
OUT

Mux10

SEL[1..0]

DATA[3..0]
OUT

Mux11

SEL[1..0]

DATA[3..0]
OUT

Mux12

SEL[1..0]

DATA[3..0]
OUT

Mux13

SEL[1..0]

DATA[3..0]
OUT

Mux14

SEL[1..0]

DATA[3..0]
OUT

Mux15

SEL[1..0]

DATA[3..0]
OUT

Mux16

SEL[1..0]

DATA[3..0]
OUT

Mux17

SEL[1..0]

DATA[3..0]
OUT

Mux18

SEL[1..0]

DATA[3..0]
OUT

Mux19

SEL[1..0]

DATA[3..0]
OUT

Mux20

SEL[1..0]

DATA[3..0]
OUT

Mux21

SEL[1..0]

DATA[3..0]
OUT

Mux22

SEL[1..0]

DATA[3..0]
OUT

data_out[0]~reg[19..0]

D

CLK

ENA

SCLR
20'h0

Q

data_out~[19..0]
0

1

data_out~[79..20]
0

1

data_out~[99..80]
0

1

done~reg0

D

CLK

SCLR
1'h0

Q

done~0
0

11'h1

done~1
0

11'h0

iValid

D

CLK

SCLR
1'h0

Q

iValid~0
0

11'h1

iValid~1
0

1
iValid~2

0

11'h0

iValid2

D

CLK

SCLR
1'h0

Q

iValid2~0
01'h1

1

iValid2~1
0

1

iValid2~2
0

11'h0

oReady

D

CLK

SCLR
1'h0

Q

oReady~0
0

11'h1

oReady~1
0

1

oReady~2
0

11'h0

oReady2

D

CLK

SCLR
1'h0

Q

oReady2~0
01'h1

1

oReady2~1
0

1

oReady2~2
0

11'h0

sqrt:SQRT

clock

iValid

oReady

reset

A[19..0]

iReady

oValid

result[19..0]

state

clk

LOG2:myLog

LOG2:myLog

reset

sqrt:SQRT

sqrt:SQRT

op[1..0]

S1

S2

S3

10
:2

9

10
:2

9

7-
>D

A
TA

[0
]9

02
9

D
A

TA
[0

]9
02

1<
-6

D
A

TA
[0

]9
01

3<
-5

D
A

TA
[0

]9
00

5<
-4

D
A

TA
[0

]9
12

5<
-1

9D
A

TA
[0

]8
99

7<
-3

D
A

TA
[0

]8
98

9<
-2

D
A

TA
[0

]8
98

1<
-1

D
A

TA
[0

]9
11

7<
-1

8D
A

TA
[0

]9
10

9<
-1

7D
A

TA
[0

]9
10

1<
-1

6D
A

TA
[0

]9
09

3<
-1

5D
A

TA
[0

]8
97

3<
-0

D
A

TA
[0

]9
08

5<
-1

4D
A

TA
[0

]9
07

7<
-1

3D
A

TA
[0

]9
06

9<
-1

2D
A

TA
[0

]9
06

1<
-1

1D
A

TA
[0

]9
05

3<
-1

0D
A

TA
[0

]9
04

5<
-9

D
A

TA
[0

]9
03

7<
-8

67
,4

7,
27

66
,4

6,
26

68
,4

8,
28

69
,4

9,
29

70
,5

0,
30

71
,5

1,
31

72
,5

2,
32

73
,5

3,
33

74
,5

4,
34

60
,4

0,
20

75
,5

5,
35

76
,5

6,
36

77
,5

7,
37

78
,5

8,
38

61
,4

1,
21

62
,4

2,
22

63
,4

3,
23

79
,5

9,
39

64
,4

4,
24

65
,4

5,
25

0:
19

5:
19

Fig. 8. Quartus Netlist of the SQRTLOG

TABLE III
FPGA SYNTHESIS RESULTS

FPGA: Cyclone V
Device: 5CSEMA5F31C6

Logic utilization (in ALMs) 518 / 32,070 (2 %)
Total registers 432
Total DSP Blocks 2 / 87 (2 %)

VI. CONCLUSIONS

This paper introduces some methods to compute the square
root and logarithms in hardware implementation. It is pro-
posed the architecture of a module called SQRTLOG, which
basically computes four operations: sqrt, log2 , log10 and
loge. Results are available for both implementations, ASIC
and FPGA. It is shown that the SQRTLOG presents a good

trade-off between arithmetic error and the number of bits of
its input, providing a fast and accurate algorithm for digital
signal processing and scientific applications.

ACKNOWLEDGMENT

The authors would like to thank the PEM (Projects for
Excellence on Microelectronics) initiative for the financial
support.

REFERENCES

[1] AXI AMBA. Protocol specification. ARM, June, 2003.
[2] Liu Bangqiang, He Ling, and Yan Xiao. Base-n logarithm implementa-

tion on fpga for the data with random decimal point positions. In Signal
Processing and its Applications (CSPA), 2013 IEEE 9th International
Colloquium on, pages 17–20. IEEE, 2013.

[3] Design Compiler. Synopsys inc, 2016.
[4] Aidong Deng, Li Zhao, and Yan Zhao. Recognition of acoustic emission

signal based on mae and propagation theory. In Management and Service
Science, 2009. MASS’09. International Conference on, pages 1–4. IEEE,
2009.

[5] Hyejung Kim, B-G Nam, J-H Sohn, J-H Woo, and H-J Yoo. A 231-mhz,
2.18-mw 32-bit logarithmic arithmetic unit for fixed-point 3-d graphics
system. IEEE journal of solid-state circuits, 41(11):2373–2381, 2006.

[6] Yamin Li and Wanming Chu. Parallel-array implementations of a non-
restoring square root algorithm. In Computer Design: VLSI in Computers
and Processors, 1997. ICCD’97. Proceedings., 1997 IEEE International
Conference on, pages 690–695. IEEE, 1997.

[7] AM Mansour, AM El-Sawy, MS Aziz, and AT Sayed. A new hardware
implementation of base 2 logarithm for fpga. International Journal of
Signal Processing Systems, 3(2):171–181, 2015.

[8] Pramod K Meher, Javier Valls, Tso-Bing Juang, K Sridharan, and
Koushik Maharatna. 50 years of cordic: Algorithms, architectures, and
applications. IEEE Transactions on Circuits and Systems I: Regular
Papers, 56(9):1893–1907, 2009.

[9] Rachmad Vidya Wicaksana Putra. A novel fixed-point square root
algorithm and its digital hardware design. In ICT for Smart Society
(ICISS), 2013 International Conference on, pages 1–4. IEEE, 2013.

[10] VB Saambhavi, SSSP Rao, and P Rajalakshmi. Design of feature
extraction circuit for speech recognition applications. In TENCON 2012-
2012 IEEE Region 10 Conference, pages 1–5. IEEE, 2012.

[11] Shashank Suresh, Spiridon F Beldianu, and Sotirios G Ziavras. Fpga
and asic square root designs for high performance and power efficiency.
In 2013 IEEE 24th International Conference on Application-Specific
Systems, Architectures and Processors, pages 269–272. IEEE, 2013.

[12] C Turner. A fast binary logarithm algorithm. IEEE Signal Processing
Mag, 27(5):124–140, 2010.

[13] UMC. United Microelectronics Corporation. www.umc.com.

