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Abstract. This paper presents FPGA implementation of a floating-
point library for high-performance video processing. The library com-
prises functions including addition, multiplication, division, square-root,
exponentiation and logarithm, as well as floating-point to fixed-point and
fixed-point to floating-point conversion. We implement a set of composite
functions using this library to compute custom floating-point arithmetic
using an Artix-7 FPGA. The synthesis of the library using the soft-
ware toolkit Vivado from Xilinx is performed and compared with the
open-source floating-point library Flopoco. The synthesized library has
a maximum latency of 18 cycles to process 20 composite floating-point
functions in parallel running at a clock frequency of 148.5 MHz.

Keywords: Floating-point arithmetic, FPGA, real-time, VLSI.

1 Introduction

Image and video processing have become popular applications for Field Pro-
grammable Gate Arrays (FPGAs). The necessity to meet real-time processing
and low-power consumption are contributory factors to this popularity . The
fine-grained nature of FPGAs enables them to exploit parallelism, which leads
to acceleration of complex tasks. However, the inherent fine-grained features
make the programming of FPGAs difficult with a high code density in the im-
plementations. As a result, when implementing hardware architectures, often not
only the algorithm is required to be described, but as well the basic arithmetic
operations that compose them[26][3].

Fixed-point arithmetic is the preferable data representation when dealing
with hardware implementations with the advantage of saving logic resources
when compared with floating-point designs. However, the compactness of algo-
rithms resulted from fixed-point format is penalized by the additional numeric
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manipulations to compensate the quantization error introduced during the con-
version from floating-point to fixed-point [21]. When the application requires
high precision and dynamic range, floating-point fits better as the data repre-
sentation, reducing the development time of a product due to its ease of im-
plementation. A customizable floating-point results in efficient implementations
controlling the dynamic range and precision with the necessary number of bits in
the exponent and mantissa fields, respectively leading to compact architectures
and maintaining the features (range and precision) of the standard floating-point
format.

MathWorks shows in [18] the advantages of using floating-point over fixed-

point representations in FPGA and ASIC designs using the expression y = (1−x)
(1+x) .

If the floating-point format is applied to compute the value of y, no additional
manipulation is required to avoid overflow and the operation executes with high
precision and dynamic range with all the data types having the same number of
bits. However, to perform the same expression in fixed-point format, the follow-
ing steps are computed: the division is executed with the product of the numer-
ator with the reciprocal of the denominator, where the reciprocal operation is
computed using approximation methods such Newton-Rapshon or lookup tables
(LUTs). The numerator and denominator use different data types to control
overflows resulted from the subtraction and addition. Although Matlab provides
the HDL Coder to generate hardware implementations using the floating-point
format, the data representation uses single-precision, which leads to additional
resource usage if the application needs less precision and range.

A set of commercial floating-point arithmetic hardware cores are available in
the market, which provides high-level customization. Xilinx LogiCORE [25] is a
floating-point library, which enables the specification of floating-point functions
such as adders and multipliers, logarithms and exponentiation. The exponent
and mantissa fields are customized (the exponent bit-width is from 4 to 16 bits;
the mantissa from 4 to 64 bits). Similarly, Altera [2] provides floating-point func-
tions with the single-extended precision format (inputs between 43 and 64 bits,
the exponent field has at least 11 bits; the mantissa has a minimum of 31 bits).
Synopsys [23] also provides floating-point libraries for FPGA and ASIC design
flow, with a flexible exponent field ranging from 3 to 31 bits and a mantissa, with
width varying from 2 to 256 bits. Another popular state-of-the-art in both in-
dustry and academia is FloPoCo (Floating-PointCores) [9], an open-source C++
framework for generating arithmetic cores in VHDL. FloPoCo auto-generates
pipelined modules for addition, multiplication, division, square-root, exponenti-
ation, among other functions. The exponent and mantissa fields are freely-chosen
by the user, enabling customized floating-point arithmetic according to the ap-
plication needs.

Our focus in this work is to apply floating-point operations in high-resolution
real-time video processing using FPGAs. Many applications require the math-
ematical operations of division and logarithms. For instance, the detection of
variation in images of the same scene taken in different times has a large num-
ber of applications in video surveillance, remote sensing and medical diagnosis
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[20][7][4][24]. A division of two frames can detect variation in the scene, where
each floating-point pixel of the first scene is divided by each floating-point pixel
of the second scene. Logarithms are also widely used in image processing appli-
cations, for example, in real-time skin segmentation or in the estimation of the
likelihood scores estimation for Gaussian Mixture Models [1][10]. Square-roots
are also present in many advanced algorithms in real-time image processing[13].
Exponential functions have applications in non-linear image interpolations us-
ing B-splines [15]. Although image processing operations using floating-point
have straightforward implementations using a high level of abstraction language
such as Python, software implementations often do not meet the real-time re-
quirement for high-resolution images. In addition to that, the excessive power
consumption justifies embedded applications with FPGAs or ASIC.

A reconfigurable framework in run-time execution is a desirable feature in
many applications. Serial buses such as UART, I2C and SPI are the most com-
mon protocols used to interconnect embedded systems and provide reconfigura-
bility. The serial connections allow transmission of data in high frequencies with
a reduced cost of pin counts with simple implementations of the protocols [19].
The integration between a host computer and processing elements in FPGAs
enable the run-time reconfiguration of architectures. This integration is useful
when a user-friendly graphical interface (GUI) needs to send a bank of registers
to select an operation in an image processing environment [6]. Another applica-
tion is when there is a need to read a pixel at a specific position in real-time.
Therefore, the on-the-fly reconfigurability resulted from the PC-FPGA bridge
reduces time in hardware implementations. Moreover, it allows a high-level ver-
ification of the functionalities and fast prototyping of the framework.

To summarize, the main contributions of this paper are:

– a multi-precision floating-point library for high-performance video processing
comprising functions of addition, multiplication, division, logarithm, square-
root, exponentiation, floating-point to fixed-point and fixed-point to floating-
point conversion;

– the synthesis of the library using the software toolkit Vivado and the com-
parison of the results with the open-source floating-point library FloPoCo;

– a graphical interface, which allows the communication of the FPGA with
a computer, enabling the writing of floating-point registers and reading of
floating-point pixels in real-time.

The rest of this paper is organized as follows. Section 2 provides an overview
of the proposed floating-point library and the image quality evaluation of the
framework. Section 4 discusses the results of synthesis of the proposed frame-
work. Finally, section 5 concludes this work.

2 Proposed Floating-point Library

This section gives an overview the proposed architectures and implementation of
the floating-point library. Subsection 2.1 describes conversion between floating-
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point and fixed-point. Subsection 2.2 covers the implementation of the floating-
point adder and multiplier and subsection 2.3 discusses the implementation and
architectures of the functions (division, logarithm, square-root and exponentia-
tion) based on the polynomial approximation.

2.1 Conversion between floating-point and fixed-point

Let x and X be the representations of a floating-point and a fixed-point number,
respectively. According to equation 1, x is a function of the sign s, the exponent
e and the mantissa m. On the other hand, X is a function of M integer bits,
N fractional bits, where ak and bk ∈ {0, 1} and X also is represented in 2’s
complement, i.e., (−X) = 2M+N+1 −X.
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Fig. 1. Architectural descriptions of the floating-point adder, multiplier and conversion
between floating-point to fixed-point.


x = (−1)s × 2e × 1.m

X =
M∑
k=0

ak2
N+k +

N∑
k=1

bk2
N−k (1)

Let χ : x → X be a function to convert a floating-point to a fixed-point
number. χ can be defined as X = χ(x) = x× 2N . The implementation of χ is a
shift of the mantissa with e +N bits. Similarly, let χ−1 : X → x be a fucntion
to convert a fixed-point to a floating-point number. The determination of χ−1 is
done by finding the most signifcant bit (MSB) of X using a leading-one detector
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to compute the exponent. After finding the exponent, the mantissa is computed
truncating X to its MSB position. An overview of the architectures to computer
χ and χ−1 is shown in figure 1. Note that the determination of the signs of x
and X is done by checking if the bit s = aM is zero (positive) or one (negative).

2.2 Floating-point adder and multiplier

Given two floating-point numbers x = (−1)sx × 2ex × 1.mx and y = (−1)sy ×
2ey × 1.my, if |x| ≥ |y|, thanx±y has the form of the equation 2.

x± y = (−1)sx ×
(
1.mx ± 1.my

2ex−ey

)
× 2ex (2)

The steps required to compute x± y are described as follows. The first step
is to swap x and y if |y| > |x|. This guarantees that |x| ≥ |y| and that the
expression ex − ey will always be positive. The next step is to shift the man-
tissa of the smallest number with the exponent difference and add the shifted
mantissa to the mantissa of the bigger number. Finally, a normalisation stage is
required to normalise the mantissa (and increment the exponent) of the resulted
operation. This is required if the resulted mantissa is smaller than 1. The nor-
malisation stage can be processed using a leading-one detector to find the MSB
bit of the mantissa. It is important to note that the hardware implementation of
the shift stage can infer barrel shifters and compromise the performance of the
floating-point adder [14]. The high-performance computation can be achieved
using pipelined stages in addition to the substitution of the barrel shifts with a
set of constant shifts executed in parallel.

Consider now the operation of floating-point multiplication defined in the
equation 3.

x× y = (−1)sx⊕sy × 2ex+ey × (1.mx × 1.my) (3)

The floating-point multiplication is straightforward. The sign of the product
is the xor operation of the sign operands. The exponent and mantissa of the
product consist of the sum and multiplication of the exponent and mantissae
of the operands, respectively. Similar to the addition, the normalisation of the
mantissa (and the descrease of the exponent) is also required if the resulted
mantissa is bigger than 1. The basic architectural description of the floating-
point adder and multiplier is also shown in figure 1.

2.3 Polynomial approximation based functions

The implementation of a floating-point divider is conceptually similar to the
multiplication operation. According to equation 4, the computation of the quo-
tient’s sign also results from a xor operation. The exponent of the quotient is
the difference of the operand exponents, and the mantissa is the product of the
mantissa’s dividend with the reciprocal of the mantissa’s divisor[5]. In addition
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to that, an exception handling deals with division by zero, infinities and not-a-
numbers. However, the computation of the reciprocal of the mantissa turns the
divider a complex function.

x

y
= (−1)sx⊕sy × 2ex−ey × 1.mx × 1

1.my
(4)

Although a change in the base only adds a constant multiplication, the loga-
rithm in base 2 is the most convenient due to its simplicity. According to equation
5, if the operand is negative, the resulted logarithm is not-a-number, since the
logarithm is defined only for positive reals. Otherwise, the result is the logarithm
of the mantissa added to the shifted exponent of the operand [16]. This addition
results in a fixed-point number and a floating-point to fixed-point conversion
converts the final value[5]. Additionally, an exception handling can handle oper-
ations with infinities and not-a-numbers.

log2(x) =

{
e+ log2(1.m), if s = 0
NaN, if s = 1

(5)

The floating-point exponentiation can be simplified by selecting the base
2 for the power function5. The first step for the operation is to convert the
floating-point to a fixed point number and break the result into two parts XI

and XF [11]. As described in equation 6, the integer number XI is the resulted
exponent. The mantissa is computed with the expression 2XF , if the operand
x is positive, or 2−XF is if x < 0. The exception handling is responsible to
manipulate underflows, overflows, infinities and not-a-numbers.

2x = 2(−1)s×(XI+XF ) =

{
2XI × 2XF , if s = 0
2−XI × 1

2XF
, if s = 1

(6)

The floating-point square-root operation is defined in equation 7. The idea is
to compute the square-root of the mantissa’s operand if its exponent is even or to
multiply the mantissa’s operand by two and take the square-root if the exponent
is odd [8]. The resulted exponent is calculated checking the least significant bit
of the exponent’s operand and based on this bit, the exponent is decrement by
one, followed by a division by two using a shift register6. The computation of
the mantissa requires the implementation of the square-root operand to compute
the number

√
t in the range t ∈ [1, 4).

√
x =


2

e
2 ×

√
1.m, if e is even

2
e−1
2 ×

√
2× 1.m, if e is odd

NaN, if s = 1

(7)

The implementation of the operations in equations 1 to 4 requires the manip-
ulation of transcendental functions7, which can be computed using polynomial

5 Again, the base change is realized with a constant multiplication.
6 If the operand is negative, the resulted square-root is not-a-number.
7 Even the division, not considered a transcendental function, still requires an approx-
imation.
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approximations within a specific range. The accuracy of the implementation is
dependent on the degree of the polynomial used in the approximation. Slicing
the range of the function into smaller segments leads to improved accuracy[17].

A function f(x) can be approximated by a degree-d, n-segments polynomial
y in the range xi ≤ x < xf . The approximated function in the k-th segment

is defined according to equation 8, where η =
(xf−xi)

n and the matrix Cn×d

contains the coefficients of the polynomial approximation.

y(k, d, x) ≈
d∑

n=0
C(k, n)xd−n, xi + kη ≤ x < xi + (k + 1)η (8)

2n:n

Ik=xi+kη≤x≤xi+(k+1)η
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Fig. 2. Parameterizable degree-d, n-segments polynomial approximator

Figure 2 illustrates the hardware implementation of a general polynomial ap-
proximator. The architecture is parameterizable in terms of the degree d and the
number of segments n. The computation of the approximation uses d additions
and d multiplications. Moreover, n × (d + 1) coefficients are stored in lookup
tables to evaluate the approximations.

Cα =


0.70986 −0.9735 0.99947
0.38742 −0.82214 0.98109
0.23424 −0.67285 0.94441
0.15228 −0.55171 0.89948

 , Iα ∈ [0, 1) (9)
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Fig. 3. Hardware implementation of floating-point division, logarithm, square-root and
exponentiation using the general polynomial approximator

Cβ =


−0.573 1.42883 0.00028
−0.3829 1.33815 0.0147
−0.27387 1.2312 0.03792
−0.20558 1.12988 0.07564

 , Iβ ∈ [0, 1) (10)

Cγ =


0.14315 0.62811 0.98516
0.20244 0.68584 0.9997
0.28629 0.68363 1.0004
0.40488 0.56192 1.0326

 , Iγ ∈ [−1, 1) (11)

Cδ =


−0.07913 0.64644 0.43337
−0.04069 0.51676 0.54339
−0.02576 0.44338 0.63378
−0.01816 0.39451 0.71252

 , Iδ ∈ [1, 4) (12)

The hardware implementation of the floating-point operations of division,
logarithm, square-root and exponentiation is shown in figure 3. Equations 9 to
12 show the coefficients and ranges I ∈ [xi, xf ) used in the approximations
for the operations reciprocal ( 1x ), logarithm (log2(x)), exponentiation (2x) and
square-root (

√
x), respectively. A degree-2, 4-segments polynomial is chosen in

this particular case. Each function incorporates one instance of the polynomial
approximator in its datapath, allowing the generation of customizable hardware
with little modification. The latency of the operations is a function of the degree
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of the polynomials. This results from the pipelined additions and multiplications
in the polynomial approximator to achieve high-performance computation. The
number of segments does not affect the latency, once the ranges are selected using
a combinatorial priority encoder8. Table 1 shows the latency of each floating-
point operation described in this work.

Table 1. Latency and throughput of each floating-point operation

Operation Latency

float2fix conversion 1 cycle

fix2float conversion 1 cycle

addition 6 cycles

multiplication 1 cycle

degree-d approx. for division d+4 cycles

degree-d approx. for exponentiation d+4 cycles

degree-d approx. for logarithm d+3 cycles

degree-d approx. for square-root d+3 cycles

3 Proposed Framework

This section describes the framework for high-performance video processing on
FPGA. The proposed framework consists of FPGA implementations of pixel
processing operations in floating-point arithmetic. Composite functions including
addition, multiplication, division, logarithm and square-root process pixel at a
frequency of 148.5 MHz. Figure 4 shows the block diagram of the framework.
The framework contains an HDMI receiver (dvi2rgb) and transmitter (rgb2dvi),
the clock wizard9 (for providing all the required clock signals) and the video
framework, which is the core of the floating-point library and the SPI interface
to exchange data with the computer and ensure architectural reconfigurability.

The pixel stream is 24 bits wide, 8-bits for each RGB channel broadcasted
at 60 fps for a resolution of 1080p. A fix2float operation converts the incoming
pixel to 16-bit floating-point, 10 bits for the mantissa and 5 bits for the exponent.
Inside the framework, the floating-point pixel streams into a pipelined arithmetic
datapath performing the operations from equations 13 to 16; R, G and B are the
red, green and blue channels in floating-point format, c0, c1 and c2 are floating-
point parameters of the functions f2, f3 and f4, respectively.

f1(R,G,B) =
max(R, 1)×max(G, 1)

max(R, 1) +max(B, 1)
(13)

8 Alternatively, the range of x is selected using the ⌈log2(n)⌉ MSB bits of x.
9 The dvi2rgb and rgb2dvi are IP-Cores provided by Digilent and the clock wizard is
included in the Xilinx Vivado Suite.
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Fig. 4. Block diagram for video framework. The rgb2dvi and dvi2rgb are IP-cores for
HDMI interface and the Video framework is a custom library for floating-point pixel
processing.

f2(c0, R) = c0 × log2(max(R, 1)) (14)

f3(c1, R) = 2c1×R (15)

f4(c2, R) =
√
c2 ×R (16)

As illustrated in Figure 5, the variables c0, c1 and c2 can be updated on-the-fly
through the SPI interface. The values are sent to the FPGA using a user interface
written in Python using the library PyQt5 [22]. Each variable is written serially
as 2 bytes value using an FTDI interface [12]. The SPI interface is also responsible
for selecting the arithmetic operation to process the video frames. There is a total
of 20 operations; each one is a variant of equations 13 to 16. Each variant is an
expression varying the degree of the polynomial or the number of segments in the
approximation, summing 16 floating-point operations. In addition to that, four
operations computed using arithmetic primitives generated with the Flopoco
framework are also available. Table 2 shows the latency of each implementation
of equations 13 to 16, where f1 to f4 are the implementations using the proposed
floating-point library already discussed in section 2, whilst each function g1 to
g4 are implementations of those same equations using the Flopoco framework
[9].



FPGA Implementation of a Custom Floating-point Library 11

c2c1c0

y  x

op

x

+

xx √

fix_pix float_pix

fix2float

float2fix

SPI Interface

max(x,y)1

fix2float

fix2float

max(x,y)1

max(x,y)1

÷

x

M
U

X
x 2x

f0

f1

f2

f3

log2(x)

readPixel

H
D

M
I 
In

te
rf

a
ce

H
D

M
I 
In

te
rf

a
ce

floating-point pixelfixed-point pixel

Blue

Green

Red

Fig. 5. Pipelined floating-point arithmetic is able to process 1080p pixel at a frame
rate of 60 fps. In this particular case, the floating-point representation is of 16 bits, 10
and 5 bits for mantissa and exponent, respectively. The four functions f1 to f4 run in
parallel and the coefficients c0 to c2 are set on-the-fly through the SPI Interface.

The user interface is also capable of reading the pixel from a grabbed frame
given its spatial position. The user interface sends the x and y position of the
pixel in the image as 4 bytes to the FPGA. A module responsible for counting
the pixel position writes back the pixel value through the SPI interface. This
feature enables the reading of floating-point pixels after image processing opera-
tions for numerical analysis in real-time.The SPI and video sync timings of this
configuration are illustrated in Figure 6.

As can be seen in Figure 7, the user graphical interface (GUI) is responsible
to write the registers c0, c1 and c2, select the arithmetic operation to process the
image and also write the pixel coordinates (row and column position) to read
a processed pixel in floating-point format. A sample picture is captured using a
frame grabber10 and displayed using the software mplayer.

10 The DVI2USB frame grabber from Epiphan was used in this experiment. The reso-
lution was set to 1920× 1080 with a frame rate of 60 frames per second.
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Table 2. Latency and throughput of each floating-point composite function

Operation Latency Throughput

f1(R,G,B) d+10 cycles 1 operation per cycle

f2(c0, R) d+5 cycles 1 operation per cycle

f3(c1, R) d+5 cycles 1 operation per cycle

f4(c2, R) d+4 cycles 1 operation per cycle

g1(R,G,B) 15 cycles 1 operation per cycle

g2(c0, R) 14 cycles 1 operation per cycle

g3(c1, R) 10 cycles 1 operation per cycle

g4(c2, R) 15 cycles 1 operation per cycle

clk

SCK

SSEL

MOSI D6 D5 D4 D3 D2 D1 D0

MISO D2 D1 D0

VDE

COL P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2

VSYNC

ROW L0 L1 L2 L3 L0

Fig. 6. SPI and Video timings for enabling architectural reconfigurability. Function
parameters are sent to the FPGA and pixel values are read from the FPGA using a
user interface.

4 Results and discussions

Table 3 shows the synthesis results for functions 13 to 16 using the proposed
floating-point library11.

Each function is composed with one of the following primitives: division,
logarithm, square-root and exponentiation. For each of those primitives, the
function is approximated with a degree-2 or degree-3 polynomial with 4 or 8
segments in the range where the function is approximated. As can be seen in the
table, f1, f2, f3 and f4 are based on polynomial approximations and an increase
in the degree of the polynomial results in a larger number of DSP blocks, once
more multiplications are required to compute the approximation. On the other
hand, an increase in the number of segments leads to a increased resource usage
of LUT and LUTRAM. This is explained with the fact that more coefficients are
needed to store the coefficients in the polynomial approximation. Specifically in
the case implementation of f1, the number of DSP blocks increased from 5 to 7
when the polynomial degree varies from 2 to 3, respectively, while the LUTRAM

11 R, G, B, c0, c1 and c2 are floating-point numbers using the float16 representaiton.
For this experiment, the mantissa and exponent widths were set to 10 and 5 bits,
respectively.
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Fig. 7. The User graphical interface to control the communication between PC and
FPGA.

showed an increased from 38 to 39 elements. The implementation of g1, using the
Flopoco framework requires 849 LUTs and 543 FFs, which is around double of
the resource usage required by f1, however, no DSP blocks are consumed in this
implementation. Similar trends are observed in the implementation of f4 and g4.
The implementation of f2 showed a 50% increase in the number of DSP when
the polynomial degree rises from 2 to 3, as opposed to g2, which consumes only 1
DSP block. In addition to an increased number of FF and LUTs, g2 also inferred
0.5 BRAMs. The implementation of g3 also consumed 0.5 BRAMs, but no DSP
block was inferred, whilst f3 had an increase of 2 DSPs when the polynomial
approximation goes from degree-2 to degree-3. All the experiments were realized
using the Vivado 2019.1 targetting the Zybo Z7-20 FPGA board.

4.1 Hardware Acceleration of floating-point software
implementations

As already discussed previously, due to the inherent exploration of parallelism on
FPGAs, computer-intensive applications such as image and video processing are
great candidates for hardware acceleration. The time to process a single frame
of resolution 1920 × 1080 using Python implementation of each function f1 to
f4 is shown in Table 4.

The hardware implementation process the pixel at a frequency of 148.5 MHz,
which gives 6.73 nanoseconds to process each pixel, as each function has a
throughput of one clock cycle according to Table 2. The framerate performance
of f1, f2 and f3 is nearly half of the 60 fps achieved by the hardware acceleration,
and f4 achieves a framerate of 92 fps, which is 54% higher than the specification.
The justification of the acceleration is evident when a set of functions are com-
bined. While the chain of 20 composite operations runs in parallel on the FPGA
and still achieve the throughput of one operation per clock cycle, the software
processes them in sequence. The software execution of four functions combined
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Table 3. Syntehsis results for the hardware implementations of equations 13 to 16.
f1 to f4 are the FPGA implementations of the equations with a degree-d n-segments
polynomial approximations. g1 to g4 are the hardware implementations of the same
floating-point expressions using the Flopoco framework.

Block name LUT FF BRAMs DSP LUTRAM

f1(R,G,B), d = 2, n = 4 446 216 0.0 5 38

f1(R,G,B), d = 2, n = 8 453 218 0.0 5 39

f1(R,G,B), d = 3, n = 4 463 233 0.0 7 38

f1(R,G,B), d = 3, n = 8 473 231 0.0 7 39

g1(R,G,B) 849 543 0.0 0 32

f2(c0, R), d = 2, n = 4 183 100 0.0 4 13

f2(c0, R), d = 2, n = 8 189 100 0.0 4 13

f2(c0, R), d = 3, n = 4 202 109 0.0 6 13

f2(c0, R), d = 3, n = 8 208 109 0.0 6 13

g2(c0, R) 573 498 0.5 1 24

f3(c1, R), d = 2, n = 4 253 98 0.0 4 22

f3(c1, R), d = 2, n = 8 305 100 0.0 4 22

f3(c1, R), d = 3, n = 4 274 113 0.0 6 22

f3(c1, R), d = 3, n = 8 320 116 0.0 6 22

g3(c1, R) 386 227 0.5 0 21

f4(c2, R), d = 2, n = 4 101 50 0.0 4 9

f4(c2, R), d = 2, n = 8 147 52 0.0 4 9

f4(c2, R), d = 3, n = 4 120 64 0.0 6 9

f4(c2, R), d = 3, n = 8 162 67 0.0 6 9

g4(c2, R) 236 264 0.0 0 13

takes around 0.09 seconds, which gives a framerate of about one-sixth of the 60
fps. On the other hand, if a set of 20 operations are processed using the software
model, it accomplishes just around 3.5% of the desired framerate.

5 Conclusions

This paper presented FPGA implementation of a custom floating-point library.
The library is a set of functions including addition, multiplication, division,
square-root, exponentiation, logarithm, floating-point to fixed-point and fixed-
point to floating-point conversion. These operations run at a clock speed of 148.5
MHz. The implementation of the division, logarithm, exponentation and loga-
rithm architecture achieved a compact architecture with a degree-2 4-segments
polynomial approximation, saving up to 50% in DSP blocks and 60% in LUTs
when compared to the degree-3, 8 segments polynomial approximations. In our
future work, we will use the proposed library to process real-time video with
custom floating-point pixel arithmetic and we will evaluate the image quality
of this library against software implementaitons of image processing algorithms.
Compared to the software implementation, the hardware acceleration doubled
the framerate of the functions f1, f2 and f3, whereas f4 is fast enough to run
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Table 4. Time to process each function using a Python implementation

Operation time (seconds) frames per second

f1(R,G,B) 0.0287 34.81

f2(c0, R) 0.0285 35.06

f3(c1, R) 0.0296 33.83

f4(c2, R) 0.0108 92.53

all functions 0.0966 10.35

all functions ×5 0.4671 2.14

at 90 fps on a Core-i7 computer configuration running at 2.6GHz. However, the
speedup of the hardware acceleration is evident when a chain of 20 functions is
combined, where the software implementation achieved roughly 2 fps, which is
one-thirty of the framerate specification.
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