FPGA Implementation of Custom

Floating-Point Logarithm and Division*

Nelson Campos![0000-0001-9709-2703] " Qlaya Chesnokov®, Eran
Edirisinghe! [0000-0002=7570-3670] " 414 Alexis Lluis?

! Loughborough University, Loughborough, United Kingdom
{N.C.S.Campos, E.A.Edirisinghe}@lboro.ac.uk
2 Imaging CV Ltd, United Kingdom
slava@chesnokov.org
3 ARM Holdings PLC, Manchester, United Kingdom
alexis.lluis@arm.com

Abstract. The mathematical operations logarithm and division are widely
used in many algorithms, including those used in digital image and sig-
nal processing algorithms and are performed by approximated computing
through piece-wise polynomial functions. In this paper we present dedi-
cated FPGA architectures for implementing the logarithm and division
operations in floating-point arithmetic. The proposed hardware modules
are customizable, with the mantissa and exponent fields of the floating-
point representation defined as parameters that can be customized by the
hardware designer. The design flow of the arithmetic blocks allows the
generation of a set of architectures of custom-precision floating-point,
which can result in compact hardware, when the numerical computa-
tions require less numerical range or precision. The paper also describes
bit-width optimization using precision analysis and differential evolution
(a genetic algorithm based method) is applied to reduce the power con-
sumption and the resource usage in the FPGA minimizing the number of
flip-flops, lookup tables and DSP blocks according to a desired accuracy
chosen in the design, leading to significant resource savings compared to
existing IP cores.

Keywords: Floating-Point - FPGA - VLSI - Divider - Logarithm - Poly-
nomial approximation - Differential Evolution.

1 Introduction

Most of the modern embedded systems are powered by 32-bit CPUs capable of
performing operations in both integer and single-precision floating-point oper-
ations [2]. Although the development of algorithms using fixed-point represen-
tation is less expensive in terms of computational power, the dynamic range
and precision of the floating-point are typically the criteria used by designers
when choosing between the two formats. Furthermore, the development of most

* Supported by CDT-EI at Loughborough University and ARM Holdings PLC.

2 N. Campos et al.

of the algorithms are generally easier when using floating-point representation,
as fixed-point format often requires additional numeric manipulations to reduce
the quantization noise[10]. However, fixed-point processors are still used more
extensively than the floating-point processors due to their reduced cost, size and
power consumption.

Dedicated hardware architectures prototyped in FPGAs are usually imple-
mented over their software-based models due to their advantages in flexibility
and speed. However, the development of such architectures is generally a com-
plex task which involves a tradeoff of resource usage of memory, circuit area and
number of Digital Signal Processing (DSP) blocks. For instance, digit-recurrence
methods to perform division operations require extensive use of hardware re-
sources (lookup tables and flip-flops) and have high latency, whilst polynomial
approximation techniques use excessive memory and DSP blocks [4].

One of the main objectives in the FPGA design flow is to produce an efficient
design in terms of small circuit area and low latency, throughput and power con-
sumption. A common optimization technique is to find the minimum number of
bits that represents a signal within each design. This technique is often expen-
sive in search space and an analytic range analysis is required to determine the
bit-width of each signal [5].

In this paper we present dedicated FPGA architectures for implementing
the logarithm and division operations in floating-point arithmetic. A numeric
analysis is provided to find the optimum bit-width of each coefficient of the
polynomial approximations used to compute the transcendental functions such
as division and logarithm, but it is shown that the method can be expanded to
implement any other function that can be approximated to a polynomial. These
coefficients are also dependent on the width of the mantissa, once the modules
are customizable, being compatible with the 32-bit IEEE-754 [1] standard format
and also being expandable to fit for other numerical representations, such as the
16-bit half-precision floating-point, more suitable for embedded image processing
applications.

To summarize, the main contributions of this paper are:

— propose floating-point hardware architectures for mathematical division and
logarithm modules;

— parameterizable modules with the mantissa and exponent widths as inputs
defined by the user;

— apply techniques of precision analysis and bit-width optimization using dif-
ferential evolution in polynomial approximations to reduce the resource us-
age of the division and logarithm hardware modules.

The rest of this paper is organized as follows: Section 2 reviews previous
published papers to provide a contextual support to this current work. Section 3
presents an overview of the proposed architectures of the floating-point hardware
modules for division and logarithm. Section 4 discusses the results of precision
analysis, synthesis and optimization of the proposed architecture and Section 5
gives conclusions and recommendations for future work.

FPGA Implementation of Custom Floating-Point Logarithm and Division 3

2 Previous Work

Floating-point arithmetic have been widely implemented in FPGAs to speed up
applications which require extended dynamic range and higher precision. Hard-
ware architectures for the single precision natural logarithm and exponential,
targeting FPGA architectures such as the Arria 10 and Stratix 10 FPGAs were
presented in [4]. For both functions, the proposed implementations made efficient
use of the available resources including: DSP blocks in fixed-point arithmetic
mode, memory blocks, etc. Overall, the proposed cores offered high-performance,
while generally reducing logic consumption, at the expense of DSP and M20K
blocks. The work also presented a comparison of resource usage of the proposed
modules with that at both industry and open-source competitors. Their analysis
were only shown for single-precision. We extend the analysis of our results to
both single and half-precision.

There is a number of commercial floating-point arithmetic hardware cores
available in the market, which provide a high level of user specification. Xil-
inx LogiCORE [11] is a floating-point library, which enables the specification
of floating-point functions such as adders and multipliers, logarithms and ex-
ponentiation. The exponent and mantissa fields can be customized by the user
(with bit-width between 4 and 16 bits for the exponent and 4 to 64 bits for the
mantissa). Another popular state-of-the-art in both industry and academia is
FloPoCo (Floating-Point Cores) [3], which is an open-source C++ framework
for generating custom data-path arithmetic cores in VHDL.

Section 4 compares the synthesis results of our proposed architectures with
the synthesis of FloPoCo and LogiCORE for the mathematical operations of
division and logarithm. Our experiments were performed in the Artix 7 FPGA
using the software tool Vivado.

As mentioned previously, the implementation of transcendental functions are
often performed through the use of polynomial approximations and one of the
main bottlenecks in the design is to find the optimum bit-with to minimize re-
source usage in FPGAs. In [5] and [7] methodology for bit-width optimization
were presented in the context of polynomial approximations. The methodology
was based on Affine Arithmetic and Adaptive Simulated Annealing (ASA) aim-
ing to reduce the fractional bits of the coefficients of the polynomial represented
in fixed-point format. Although these works are relevant to us, their proposed
techniques deal with fixed-point functions. In this paper we present a method-
ology to minimize the bit-widths of the coefficients of polynomials according to
the accuracy desired, i.e. enabling variable range and precision. Further the opti-
misation technique used by the proposed approach uses Differential Evolution in
order to reduce the resource usage of FPGAs when implementing floating-point
cores of logarithms, division and exponentiation.

3 Proposed Architecture

In this section we describe the proposed floating-point architectures for math-
ematical operations of division and logarithm. The implementations are based

4 N. Campos et al.

on polynomial approximation functions that use read-only memory (ROM) to
store the coefficients of the polynomials. We also present the novel method used
for bit-width optimization, Differential Evolution, that is proposed to be used
to minimize the FPGA resource usage within the hardware modules.

3.1 Division

Consider two numbers x and y represented in floating-point format. The number

z= % can be expressed according to the equation 1:

Lo (c1)leems) 1mg

T o 2(ezfey)fbias (1)
Y 1.m,

The proposed architecture for the division is depicted in figure 1. As can be
seen in equation 1, the determination of the sign of z s, can be directly obtained
with a xor of the two input signs s, and s, and the exponent is computed with
just one subtraction.

The output mantissa m. = = can be expressed as a product m, x m;,
Yy
where m; = % and m; can be approximated by a degree-2 piecewise polyno-
Y

mial approximation with 4 segments [6]. Once 1.0 < 1.m < 2.0, the reciprocal
of 1.m can be approximated to ﬁ = (cp X m+ ¢1) X m + ¢g, where the coef-
ficients cg, ¢1 and co are obtained through polynomial approximation and they
are defined in the table 1b. Each coefficient is stored in a ROM memory that is
indexed according to the range of the mantissa. To ensure normalised floating-
point numbers, if the reciprocal of the mantissa is a number smaller than one,
then the resulted mantissa is right-shifted by one bit, whereas the exponent is
increased by one. The datapath uses multiplexers to check this normalisation.

3.2 Binary Logarithm

The computation of the binary logarithm y = logs(z) is given by the equation
2.

loga(1.my) + (e, — bias), s, = 0,

As the logarithm is defined only for positive numbers in the real domain, when
the x is negative the result y should be not a number (NaN'). One multiplexer is
used to check the sign of the number comparing the exponent with the floating-
point bias. When x is positive, the computation is the sum of the exponent e, +
log2(1.mg). The architecture of the logarithm is illustrated in figure 1. A similar
module for piecewise polynomial approximation is used in order to compute
loga(1 + my), where the coefficients can be seen in table 1 and the result of
loga(1 + m,) is added to the exponent normalised? e, and then converted from
fixed-point to floating-point.

4 The exponent e, is left-shifted by M bits, where M is the mantissa width.

FPGA Implementation of Custom Floating-Point Logarithm and Division 5

4-segements degree-2 polynomial approximation for y=f(x) Hardware implementation of floating-point logarithm

POLY APPROX
f(x) = log,(x)

Hardware implementation of floating-point divider
[BE ™] [T[Bi%[m]

X

POLY APPROX
f(x) = 1/x

Fig. 1: Floating-point divider and logarithm FPGA architectures

Table 1: Coefficients of the polynomial approximation for
loga(14+m) and —= where m € [0,1)

T
(a) Logarithm approximation (b) Reciprocal approximation
l Range H co ‘ c1 ‘) ‘ l Range H Co ‘ c1 ‘) ‘

1.0 < 1.m < 1.25|| -0.573 [1.4288|0.0003 1.0 < 1.m < 1.25{|0.7099|-0.9736]0.9995
1.25 < 1.m < 1.5||-0.3829|1.3381|0.0115 1.25 < 1.m < 1.5||0.3874|-0.8222|0.9811
1.5 < 1.m < 1.75||-0.2739|1.2312{0.0379 1.5 < 1.m < 1.75||0.2342{-0.6729|0.9444
1.75 < 1.m < 2.0{|-0.2056{1.1299|0.0756 1.75 < 1.m < 2.0{|0.1523|-0.5517]0.8995

In order to illustrate the conversion from fixed to floating-point consider
the following example. If = 6.75, in floating-point format x is 1.6875 x 22
and y = log2(6.75) = 2 + log2(1.6875) = 2.7549 = 1.37745 x 2'. The value
y can represented as a signed fixed-point number in the format 5.10 as y =
0000010.11000001015. Since y can also be expressed as y = 1.m x 2¢*P_ to convert
this number to a half-precision floating-point, where the exponent and mantissa
widths are 5 and 10 respectively, the exponent is found as the position of the Most
Significant Bit (MSB) and the mantissa is composed by the 10 least significant
bits (LSB) of y, where the MSB of the mantissa is at the position 0 and the LSB

of y is discarded in the conversion®.

5 The MSB position of the fixed-point number is found using a combinational priority
encoder.

6 N. Campos et al.

3.3 Bit-width optimization

Consider the degree-1 polynomial y = ¢ x m + ¢; and denote ¢, €., and €.,
the errors at signals y, ¢ and ¢y, respectively. The most straightforward way to
quantize y is accomplished through truncation, which gives a maximum error of
1 ulp (unit in the last place), and faithful rounding, with maximum error of (1/2)
ulp. As rounding (which gives one additional bit of accuracy) requires additional
hardware in contrast to truncation, we chose the truncation as a quantization
method for the signals in the precision analysis [7].

Adding the quantization effect to the degree-1 polynomial, equations 3 and
4 are obtained.

y+ey=(co+e,) X (m+ey)+c+e (3)

€y =M X €y + Co X € + € X €y + €, (4)

Denoting €, the truncation error of the signal z, where ¢, = 278+ and F B,
is the number of fractional bits of x, the maximum output error maz(e,) needs
to be less than 1 ulp:

mazx(e,) < 27 FBv (5)

Since max(m) = 1, the maximum accuracy of y for a given mantissa with M-
bits width is given as max(acc,) = a x 27FBeo + 34+27FBe1 where o = 1+27M
and B = |cg| x 27M.

As a design decision, suppose that y is accurate to 16 bits. Combining equa-
tions 4 and 5 gives the equation 6:

ax 27FP0 4§ 4 97FFa < 2716 (6)

A straightforward solution to the expression 6 is to use Uniform Fractional
Bit-widths (UFB), which results in a sub-optimal solution. Rather than using
UFB, i.e., assigning the same number of bits for each signals, using Multiple
Fractional Bit-width (MFB) leads to the optimal solution [7]. Lee et. al [7]
propose to use Simulation Annealing (ASA) to optimize the bit-widths of ¢
and c¢; and the with the estimated bit-widths F'B., and F'B., compute the
FB.,. In this work we apply differential evolution using mystic [8], a python
library for non-linear and constrained global optimization, to minimize the area
of the expression y = ¢y X m + ¢1, which is composed of one addition (z¢ + 1)
and one multiplication (zg x x1) modeled as a cost function areay(zo,z1) =
maz([FBy, |, [FBy, |)+ [FBg, | X [FB,, | constrained to equation 6. After find-
ing FB., and FB,,, the determined values using mystic are substituted in the
expression 7 to compute F'B,,.

maz(e,) = a X €, + maz(|y|) X €, + €c, (7

FPGA Implementation of Custom Floating-Point Logarithm and Division 7
4 Results and Discussion

The bit-widths for each coefficients of the polynomial approximations cg, c; and
¢y were obtained using differential evolution® and the results are shown in table
2a. For both division and logarithm mathematical operations, the maximum
accuracy is 1077 when the mantissa is of precision 10-bit, which resulted in
a reduction of 1-bit in ¢; and ¢y (when the coefficients has uniform fractional
bit-width) in the division operation. When the desired accuracy is 2716, which
guarantees the correctness up to the fourth decimal digit, the signals cg, c; and
co decreased the bit-width from 23 bits to 19, 17 and 18 bits, respectively.

Table 2: Multiple Fractional Bit-width (MFB) coefficients found using differential
evolution

(a) Divider (b) Logarithm
[m[lcofer]ea] acc | [m[lcofer]ea] aecc |
10][10] 99 1077 10][10[10] 8]J10~7
13[[12[12[12|[107T° 13[[13[13[11][10~T°
16{[15[16[15[[10~ 16[[16]16]14[[10~ 13
19][19]18[18[[107® 19][19]19]17][107C
23[[17(18[19][10~T° 23[[19[17[18][10T®

The accuracy of the floating-point division and logarithm will be directly
dependent on the accuracy of the polynomial approximations of loga(m+ 1) and
ﬁ over the interval [0,1). Better accuracy is achieved with higher degrees
of the polynomial approximations, as well as with a large number of intervals
with smaller segments[4]. The approximation of loga(m+1) and ﬁ over [0,1)
using degree-2 piecewise polynomial approximations is accurate to 12 bits with
1 ulp and 2 ulp, respectively”’.

The number of lookup tables , flip-flops, DSP blocks and Block RAM (BRAM)
are of particular interest for this experiment. The LUT and flip-flops are the ba-
sic building blocks of an FPGA and are generally used for the implementation
of combinational and sequential logic, respectively. The BRAM is an embedded
memory on-chip which provides a relatively large amount of data and is often
used when inferring memory. DSP blocks are arithmetic logic units embedded
into the fabric of the FPGA and are usually inferred to perform multiplication

operations.

5 using the parameters maximum iterations to run without improvement gtol= 2000
and population size npop = 500.

" According to [9] the Flopoco operator for division is correctly rounded and has
accuracy of 0.5 ulp, whereas the LogiCORE documentation states that the division
and logarithm has accuracy of 1 ulp.

8 N. Campos et al.

Table 3: Resource Usage and Latency for Division and Logarithm on Artix 7
FPGA

Precision Function|| Architecture |[LUTs|FFs/DSPs|BRAM |Latency
Proposed UFB| 43 0 3 0.0 6 cycles

Div Proposed MFB| 41 0 3 0.0 6 cycles

LogiCORE Div| 253 [431| 0 0.0 | variable

half-precision FloPoCo Div | 498 |212| O 0.0 |10 cycles
Proposed UFB| 211 | 49 2 0.0 7 cycles

Log Proposed MFB| 210 | 49 2 0.0 7 cycles

LogiCORE Log| 274 [469| 2 0.0 variable

FloPoCo Log | 411 |377| 1 0.5 |17 cycles

Proposed UFB| 137 0 7 0.0 6 cycles

Div Proposed MFB| 127 | 0 6 0.0 6 cycles

LogiCORE Div| 809 [1487| 0 0.0 | variable

single-precision FloPoCo Div | 1617 | 624 | 0 0.0 |17 cycles
Proposed UFB| 534 | 65 5 0.0 7 cycles

Log Proposed MFB| 555 | 65 4 0.0 7 cycles

LogiCORE Log| 721 (1191 4 0.0 variable

FloPoCo Log | 681 |842| 3 2.0 |23 cycles

Table 3 shows the FPGA resource usage for piecewise polynomial approxima-
tions for both #ﬂ and loga(1+m). The maximum latency of the Floating-Point
for LogiCORE operators can be found on the Vivado IDE [11]. The through-
put of the operations is one operation per clock cycles, which gives a perfor-
mance of 100 million floating-point operations per second for a clock frequency
of 100MHz.The modules were synthesized in the Artix 7 FPGA from Xilinx
using the Vivado 2018.3. The polynomial approximation for division, when the
mantissa width is 23 bits and the desired accuracy is 2716, the bit-width opti-
mization showed a reduction of 10.3093% and 20% in the number of LUTs and
DSP blocks, respectively. Similarly, for the same mantissa bit-width and accu-
racy, in the logarithm approximation the LUTs increased by 41.5584% and the
DSP blocks reduced 20%. The trends observed for both logarithm and division
approximations showed a smaller reduction in terms of LUTs and DSP blocks
when the mantissa is 10 bits wide. The designs of the floating-point division and
logarithm have a latency of 6 and 7 clock cycles, respectively, and throughput
of one operation per clock cycle and RTL was written in SystemVerilog.

The logarithm and divider in floating-point half-precision (mantissa M=10-
bit and exponent E=5-bit) and in single-precision (M=23-bit and E=8-bit)
modules were also synthesized in Vivado. The synthesizer converts hardware
description language into a gate-level netlist. The implementation stage is a step
followed by the synthesis in the Vivado design flow. In this stage the netlist is
placed and routed in the FPGA device. The target used is the Artix 7 FPGA at
a clock frequency of 100MHz and the designs are described in SystemVerilog.

We have compared the proposed cores (both architectures with uniform frac-
tional bit-width and multiple fractional bit-width obtained with the optimiza-

FPGA Implementation of Custom Floating-Point Logarithm and Division 9

tion using mystic®) with the available cores from the open-source framework
FloPoCo? [3] and with the Xilinx LogiCORE floating-point cores for division
and logarithm [11]. For the logarithm, our proposed core is a base 2 logarithm
as opposed to the natural logarithm from FloPoCo and LogiCORE. However,
our comparison is still fair, once the base conversion of logarithms can be per-
formed with just one multiplication by constant!'®. Table 3 explores the FPGA
resource usage for the logarithm and division cores. The optimization showed a
reduction in the resource usage as compared to the same architectures without
the bit-width optimization. To measure this reduction, we first synthesize the
hardware modules (floating-point logarithm and divider cores) in Vivado using
uniform bit-width for all the coefficients ¢y, ¢; and ¢ in the polynomial ap-
proximation cores. Thereafter, for a given precision (single or half-precision) we
use our optimization framework using mystic in two stages. Firstly, we find the
minimum number of bits of ¢y and ¢; using equation 6. At this stage, we also
estimate the error €, defined in equations 3 to 5. During the second stage, we use
the error ¢, found previously in equation 7 to compute c,. Finally, with the new
values of ¢g, ¢; and ¢z, we synthesize again the modules in Vivado and compare
the synthesis results using both uniform and multiple fractional bit-widths.

Overall, the proposed cores showed less resource usage than FloPoCo and
LogiCORE. It is important to note that unlike FloPoCo, our modules do not
round the operations to the final result. In addition to that, the polynomial
approximations are of order 2 with only 4-piecewise segments. Furthermore,
for simplicity the proposed cores in this work does not have the exceptional
cases to deal with subnormal numbers or infinity and not-a-numbers. These
limitations were not an issue, as the accuracy and precision are sufficient for our
applications in image processing and hardware compactness had higher priority
during the design decisions. As can be observed from table 3, as opposed to
FloPoCo, the proposed division cores consume fewer resources because it uses
the embedded DSP blocks to perform the polynomial approximations, whilst
FloPoCo implementation makes more use of LUTs and flip-flops. Furthermore,
the FloPoCo logarithm also inferred block RAM memory.

We also compared the proposed cores with the IP-Cores from Xilinx Logi-
CORE, which resource usage was roughly half of the LUTs and double of the flip-
flops consumed by FloPoCo for the divider module. For the logarithm, FloPoCo
consumed less resources (LUTs, flip-flops and DSP blocks) than LogiCORE be-

8 We chose this framework because of its simplicity to solve highly-constrained non-
convex problems using Python.

9 The Flopoco Div and Log (VHDL divider and logarithm modules) are obtained from
the framework with the command flopoco FPDiv we=8 wf=23 and flopoco
FPLog we=8 wf=23 for single-precision. For half-precision, the parameters are
we=>5 and wf=10.

10 Tf the logarithm base is known during synthesis time, than the coefficients of the poly-
nomial approximation will be different than that for the approximation for logz(z).
Otherwise, a change of base during runtime will require one floating-point multi-
plier, which increases the latency by one clock cycle and consumes one additional
DSP block.

10 N. Campos et al.

cause FloPoCo also uses BRAMs in contrast to our proposed modules and Logi-
CORE.

5 Conclusion

In this paper we have presented dedicated FPGA architectures for logarithm and
division mathematical operations in floating-point arithmetic. For both modules,
the mantissa and exponent are flexible parameters that can be defined by the
user. The bit-width optimization of both methods is dependent of the desired ac-
curacy defined in the design stage and is accomplished using differential evolution
with the Python library mystic. For both modules, the bit-width optimization
showed a reduction of LUTs, flip-flops and DSP blocks, leading to significant
resource savings compared to existing IP cores.

References

1. Committee, I., et al.: 754—2008 ieee standard for floating-point arithmetic. IEEE
Computer Society Std 2008 (2008)

2. Dang, D., Pack, D.J., Barrett, S.F.: Embedded systems design with the texas
instruments msp432 32-bit processor. Synthesis Lectures on Digital Circuits and
Systems 11(3), 1-574 (2016)

3. De Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with flopoco.
IEEE Design & Test of Computers 28(4), 18-27 (2011)

4. Langhammer, M., Pasca, B.: Single precision logarithm and exponential archi-
tectures for hard floating-point enabled fpgas. IEEE Transactions on Computers
66(12), 2031-2043 (2017)

5. Lee, D.U., Gaffar, A.A., Cheung, R.C., Mencer, O., Luk, W., Constantinides, G.A.:
Accuracy-guaranteed bit-width optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25(10), 1990-2000 (2006)

6. Lee, D.U., Cheung, R., Luk, W., Villasenor, J.: Hardware implementation trade-offs
of polynomial approximations and interpolations. IEEE Transactions on computers
57(5), 686-701 (2008)

7. Lee, D.U., Villasenor, J.D.: A bit-width optimization methodology for polynomial-
based function evaluation. IEEE Transactions on Computers 56(4), 567-571 (2007)

8. McKerns, M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.: Proceedings of the
10th python in science conference (2011)

9. Pasca, B.: Correctly rounded floating-point division for dsp-enabled fpgas. In: 22nd
International Conference on Field Programmable Logic and Applications (FPL).
pp. 249-254. IEEE (2012)

10. Renczes, B., Kollar, I.: Roundoff errors in the evaluation of the cost function in
sine wave based adc testing. In: 20th IMEKO TC4 International Symposium and
18th International Workshop on ADC Modelling and Testing. pp. 15-17 (2014)

11. Xilinx: LogiCORE IP Floating-Point Operator v7.0. https://www.xilinx.
com/support/documentation/ip_documentation/floating_point/v7_0/
pg060-floating-point.pdf, [Online]

